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It is proposed to modify the suction surface of a wing profile in such a way as to reduce the maximum 

velocity and to exclude cavitation. In mathematical terms, the problem is reduced to a mixed inverse 

boundary-value problem in aerodynamics, with part of the profile contour prescribed and the other 

part to be determined so as to obtain a preassigned velocity distribution on it. A numerical-analytical 

method is proposed and elaborated and a computer algorithm is outlined for the design and 

optimization of cavitation-free profiles. Examples of computed profiles are given. 

It is well known that, at positive angles of attack, cavitation may occur on the upper suction 
surface of a hydroprofile (a hydrofoil or propeller blade) due to low pressure, i.e. high 
velocities on the surface. Under certain circumstances the effect may be avoided by specially 
designing the shape of the suction surface so as to limit the magnitude of the velocity. Taking 
the model of an ideal incompressible fluid, one then arrives at a mixed inverse boundary-value 
problem for analytic functions [l]. On the assumption that the entire contour is impermeable, 
the velocity distribution u is usually specified on the unknown part of the contour, as a 
function of one of the parameters: s-the arc-length, x-the abscissa, and y-a parameter in 
the canonical region. To solve the problem one must complete the known part of the 
hydroprofile and determine its hydrodynamic characteristics. The earliest publications in this 
area, which dealt with the design of aerofoils, are apparently [2-4] (see also [S, pp. 448-4561). A 
survey of later publications relevant to mixed inverse boundary-value problems may be found, 
for example in [6]. 

In this paper it is assumed that the unknown section of the hydroprofile is to be determined 
from the velocity distribution v as a function of the arc-length S, where u(s) is specified so as to 
exclude cavitation. 

1. STATEMENT OF THE PROBLEM 

An ideal incompressible fluid is flowing smoothly around an impermeable wing profile with 
a smooth contour L and sharp trailing edge B in the plane z = x+ iy The flow is assumed to 
have a velocity u-e” at infinity (Fig. la). The contour L is divided by a given point C into a 
known part (L,) and an unknown part (4). the arc-length s(-Z, =S s =S l,) is measured along L 
in the positive sense relative to the flow region, with s = 0 at C. The shape of the known part 
L., of L is given by the equation 
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q=q(s), -I,%:co 

where TI is the angle between the tangent to the contour and the positive direction of the x axis. 
The distribution of the magnitude of the flow velocity on the unknown part J!& of L is given 

u=f(o), <r=sll*, oaosl (1.1) 

where f(a) is a positive smooth function in the interval [0, 1) (Fig. lb). The behaviour of f(o) as 
o + 1 is determined by the angle rce(1 <E s 2) external to the profile at the trailing edge: 
f(1) = u if E = 2 and f(1) =0 if E f 2 (the dashed curve in the neighbourhood of G = 1 in 
Fig. lb). 

Note that in this formulation of the problem the flow branch point A lies on the known part 
L., of L and its position will be determined in due course. The trailing critical point of the flow, 
according to the Joukowski-Chaplygin postulate, will be the sharp edge B. The leading edge D 
of the profile lies on &, so that the x axis may be directed along the chord BD. In that case a 
will be the angle of attack. 

The quantities e, u,, d,, as well as the dimensionless circulation of the flow velocity 
I* = I’ll, along the profile, are specified (I is the dimensional circulation). 

It is required to complete the profile and determine its hydrodynamic characteristics &, the 
length of the completed part, and a, the angle of attack, will be determined as part of the 
solution. 

Under the above assumption, a complex flow potential W(Z) = cp(x, y)+M(x, y) exists, where 
cp is the velocity potential and w is the stream function. Since w = const on an impermeable 
contour (we will take w = 0), it follows that on L we have v = dcplds, i.e. given (l.l), we may 
assume that the flow velocity distribution is known on the unknown part & of the contour 
apart from a constant Z2 

Q(0) = I, 7 f(o)da, 0 C cr c 1 (1.2) 
0 

Put Q~ = cp(l)/Z,. The region in which w varies, after making a slit along the streamline 
converging with the trailing edge, is shown in Fig. 2(a). Corresponding points in different 
planes are denoted by the same letters. 

(a) 
(Z) 

lY 

Fig. 1. 

‘I (b) 

Fig. 2. 
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2. SOLUTION 

The canonical region will be the exterior of the unit circle I c Ia 1, with points corresponding 
as indicated in Fig. Z(b). To solve the problem we must find a function L = z(c) that maps 
lc Ial conformally onto the exterior of the required profile, normalized so that z(l)= 0 and 
Z(“) = 00. 

Let & = e%, c, = eQ denote the pre-images of the points C and A in the 5 plane, We know 
(see, for example, [?, p. 173) that the function 

is the complex potential of a flow around the circle I c k 1 with velocity %e@ at infinity. Noting 
that on the boundary of the circle, i.e. at $ = eir, the stream function vanishes: y = 0 and cp = 0 
at c,, while w’(c,) = w’(1) = 0, we obtain 

Then, setting c = ec, in (2.1) and separating real and imaginary parts, we fired that 

(2.39 

y’(y)=Imw(e*)=O 

Let us assume that the quantities fi, y,, as well as a monotone decreasing function o(y), 
0 s y 6 y,, defining the correspondence between the points of the circle c = eti and of the 
contour & under the conformal mapping z = z(c), are known. The function x(c) = ln(~~/~z) = 
mu-i@, where 8 is the argument of the velocity vector, is analytic in the region I [ I> 1. It has a 
logarithmic singularity at the critical points { = c, and c = 1. It can be shown that the auxiliary 
function 

has the same singularities as x(c). Then the boundary values of the real part of &“(c) = x(Q-- 
F(c) on the arc Ocycy, will be 

R&(e*) = S(y) = In [ [ j:-j3)(2siu+~+rij f@(y) 2~0s 

We now define a ~~~0~ @(c), regular in I ( I a 1, such that 

where S*(y) is an as yet unknown Hoider-continuous function defining the boundary values 
of the real part of 6(c), which is analytic outside the disk 16 Ic 1, in such a way that S(y) is a 2x- 
p_eriodic_ HUlder-continuous function over the entire interval 0 d y =G 2x. Then the function 
@(c) = S-i6 admits of an integral representation 
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where 

The constant b0 is chosen so that @y,)= q(0). 
Now, consider~g the half-plane Emt % 0 of the complex plane of t = 6 +iv, we define a 

function G(t) = @D-a) regular in that half-plane. The region I?, Ia 1 is mapped onto the half- 
plane by the function 

t=i 
<+e’Ycf2 yc 

4 
__gYJ2 Q 4 

To defime G(t) we have the following boundary-value problem 

ImG=O for lE,l% 1, ReG=g(s)=flIy(5)]-q[s(r)l for I&S I 

G-4) 

where r(c) is the inverse of the function &y)=Rer(eiy), and s(5) is the required function, 
defining the correspondence between the points of L, and those of the closed interval I(, 1~ 1. 
We obtain an integral representation of G(t) using the Keldysh-Sedov formula 

Then 

and the required mapping function will be 

Hence the integral equation for our function s(g), 15 in 1, will be 

(2.5) 

(2.6) 

This functional equation, which has the form ~(5) = P((s, e), can be solved numerically using 
the iterative scheme s@+~)(Q = lP(s(“), Q n = 1, 2, . . . . As an initial approximation one can take 
the function obtained from (2.7) by putting g(t) = &), 14 14 1. The process continues until the 
functions s”(t) obtained in two consecutive iterations are identical to within satisfact~y 
accuracy. Then the coordinates of the profile are computed from (2.6) with c = e*, and one can 
then find the length & of the completed section. By (ZS), the angle of attack a will be a= 
-Im)l(=+). 

We have thus reduced the problem to determining the parameters b and ‘y, function 
o = o(y), 0 6 y s y, on I$ To do this, we compare the increments of the potentgals (12) and 
(2.3) along & 
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cp[a(y)] = q*(y), 0 c y s yc, la 0 B 0 (2.8) 

Since A lies in the known section I_.,, the functions cp(s), q*(y) are monotone. 
Consequently, for IQ. (2.8) to be solvable, q(a) and q*(y) must be equal at the ends of the 
interval of definition, i.e. cp(l) - cp(O) = cp * (0) - cp * (7,). Hence, bearing in mind that y, = IC + 28 
(2.2) we obtain after some algebra 

(2.9) 

The function f(r,, p), considered for fiied p, increases monotonically from 0 at y, = 0 to r* at 
y, = it + 28. Consequently, if (Pi > r*, formula (2.9) defines a single-valued function p = p(y,). 

Thus, we have a free parameter y,. To find it, we recall that the velocity u, is given. But this 
quantity is determined in the course of the solution: it follows from (2.5) that as c + = 

boa = exp Re (2.10) 

where, by (2.4) 

too = t(-) = i tg(yc / 4) 

Equation (2.10) may be used to determine y,. 
The free parameter y, may also be used to ensure that u, is as large as possible. This 

method of choosing y, will be considered below in greater detail in the context of our 
numerical computations. 

3. THE CONDITIONS OF SOLVABILITY AND THE CONSTRUCTION OF THE 
QUASISOLUTION 

By the conditions of solvability for an inverse boundary-value problem of aerodynamics one 
usually means conditions under which the required wing profile is closed and the condition 
that the prescribed velocity u_ coincide with that determined during the course of the solution. 
In our problem the last condition may be satisfied by a suitable choice of the parameter y,. 
The conditions for the contour to be closed are 

2jS(#%=7c(&-1) (3-I) 
0 

A quasisolution may be constructed by the technique described in [8], that is, minimum 
correction of the function S(y), e.g. on the contour 4, i.e. 0 sy by,. The result is a new 
function S*(y), which satisfies condition (3.1). When that is done, however, the contour 4 
corresponding to S*(y) need not have the prescribed shape. In order to ensure closure of the 
curve and at the same time obtain the prescribed &,, we proceed as follows. Taking S*(y) as 
the next approximation for S(y), we repeat the procedures described above to determine s(e) 
and construct a quasi-solution, thus getting a new approximation to S*(y). This procedure is 
now repeated until a profile with a closed contour is obtained. By construction, this profile will 
have the same prescribed part L, of the contour and a velocity distribution diverging only 
minimally from that prescribed on L,. 



64 N. B. Il’inskii and D. A. Fokin 

4. NUMERICAL COMPUTATIONS 

Ftgure 3 shows the results of a test computation and a computation whose purpose was to modify the 
upper section of a profile in such a way as to liquidate the velocity peak in the vicinity of the trailing edge, 

The test computation proceeded as follows. We considered flow around a 10% Zhukovskii rudder 
(curve 1, solid below and dashed above) with V, = 1 at an angle of attack cr=S*. Analytical formulae 
were used to calculate the distribution u(i) (curve 3, dashed along the lower surface and solid along the 
upper) and the numbers p =0.31, C, =0.60. The argument 3 used to describe the computations was 
related to s by the formula 3; = s + 1,. Solving the mixed inverse problem, we took as initial approximations 
the lower profile surface (the solid part of curve I) and velocity distribution u(d) over the upper surface 
(the solid part of curve 3). By the symmetry of the profile yL = n. With these data, the technique described 
above produced a profile practically identical with the initial Zhukovskii rudder. To estimate the 
computation error in the coordinates, we computed T = maxf I z *(<)- z(G) I, where z * (Q is an analytical 
solution for the Zhukovskii rubber and z(c) is the function obtained in the test computation. The result 
was T d 0.001. The coefficient C, = 0.60 coincided up to the second place with the initial value. 

It can be seen from Fig. 3(b) that the Zhukovskii rudder has a velocity peak on its upper surface, with 

t&/u, =1.81, which may cause the formation of a cavitation cavern in that part of the profile. To 
improve the hydrodynamic properties of the profile, the peak was truncated at the level u/u, = 1.50. The 
velocity distribution thus corrected was used as the initial approximation in constructing a modified 
profile with the same lower surface as the Zhukovskii rudder. As in the test computation, we set y, = 7~. 
The result was a profile (the dash-dot contour 2) with t = 10.596, C, = 0.60, in a flow with u_ = 0.95 and 
angle of attack a = 5.01°. The velocity distribution over its surface is represented in Fig. 3b) by the dash- 
dot curve 4. The velocity peak for this profile was found to be u/u_ =1.65, i.e. significantly less than the 
initial value of 1.81. However, the magnitude of u, was reduced, so that the maximum relative velocity 
u/u_ exceeded 1.50. 

To avoid thii situation, we considered the following example, attempting a second modification of the 
upper surface of the same Zhukovskii rudder (the dashed curve 1 in Fii. 4a), given u(S) with a truncated 
velocity peak at the level u/u, ~1.5, with the value of II,, however, not prescribed in advance but 
determined from the condition u, =l. the result was ye ~3.17. The profile thus constructed, with 
r = 115%, is represented by the solid curve 2 in the same figure. It has C, = 0.60 and a = 4.52’. With these 
parameters of the incident flow u(j) we obtained the solid curve 3 in Fig. 4(b). For comparison, the figure 
also shows the initial d~t~bution u(J) for the Zhukovskii rudder (the dashed curve 4). It is clear that 
modification of the upper surface made it possible not only to “truncate” the velocity peak down to 1.54 
but also only slightly to exceed the given ratio u, /u_. 

Fig. 3. 
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Modification of the suction side of the profile, aimed at achieving maximum velocity of the incident 
flow, is of practical interest. To that end one can use the free parameter 7=. A series of computations 
showed that u,(y,) is a monotone increasing Freon of ye, but as the latter increases there is a 
corresponding decrease in the rate of convergence of the method for constructing close profiles; for 
sufficiently large 7, the procedure in fact no longer converges. If the initial data are, as in the previous 
examples, the lower surface of a Zhukovskii rudder (the dashed curve 1 in Fig. 5a) and a distribution u(I) 
with velocity peak truncated at a level of 1.5 (the dashed curve 3 in Fig. 5(b), the limiting value of ye turns 
out to be close to 3.23. The corresponding profile (the third modification) with t = 1235% is represented 
by the solid curve 2 in Fig. 2(a). It has C, = 0.61 when cs = - 1.97” and u, =1.16. The d~t~bution u(g) is 
represented by the solid curve 4 in Fii. S(b). 

Figure 6 compares the results of all three modifications, with 7, : (1) prescribed in advance, (2) 
determined from the condition u, =l, and (3) determined from the condition that u, should be a 
maximum. The solid curves 1 and 4 represent the corresponding profile and velocity distribution u(3) in 
the third modification, the dashed curves 2 and 5 represent the same data in the second modification, and 
the dash-dot curves-in the first. Table 1 compares the geometrical and hydr~yn~ic characteristics of 
all the profiles considered. 

Fig. 5. 
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Fig. 6. 

Table 1 

Problem Ye uw a” urna@= cy t% 

Zhukovskii rudder 3.14 1.00 5.00 1,81 0.60 10.0 
First modification 3,14 0.95 5.01 1.65 0.60 10.5 
Second modification 3.17 1.00 4.52 154 0.60 11.5 
Third rn~i~~tion 3.23 1.16 -1.97 I?41 0.61 12.4 

The results clearly show that, using the technique described here, it has been possible to achieve a 
significant reduction in the maximum velocity on the upper surface of the profile (the second and third 
modifications). By construction, the shape of the lower surface remains unchanged and the velocity of the 
incident flow is either equal to its prescribed value or maximized. An interesting point is that the value of 
C, has changed only slightly throughout all the modifications. 
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